BASi Auxiliary Electrode - Cross-Flow Style

SKU:
MF-1092
SHIPPING:
Piece
IF YOU ARE INTERESTED IN A QUOTE FOR A LARGE QUANTITY, PLEASE CONTACT US
Email: Marknanossr@gmail.com
or
Get A Quotation

BASi Auxiliary Electrode - Cross-Flow Style

Piece 1
Request a quotation.

Contact Us

Global Head Office

Email: Marknanossr@gmail.com

Tel:+86 15606950920

Wechat: 15606950920

Address:  Building 1, No. 39 Xinchang Road, Haicang District, Xiamen City, Fujian Province, China

BASi Auxiliary Electrode - Cross-Flow Style

Buy BASi Products from NANOSSR at the best value.

An electrochemical detection flow cell consists of a working electrode, an auxiliary electrode, and a reference electrode. These work together with the electrochemical detector to apply a controlled potential for your sample to flow across, and be oxidized or reduced. The electrochemically active surface of the working electrode may be glassy carbon, copper, gold, nickel, platinum, copper, or mercury/silver.

The actual electrochemically active surface(s) in a working electrode are the centrally located “dots” in the working electrode block, as illustrated below. In some cases there may be multiple working electrodes within a working electrode block. With multiple surfaces you can further optimize the detection of multiple analytes via dual or quad electrochemical detection.

To maximize your flexibility, BASi® has developed a variety of electrochemical detector working and auxiliary electrodes suited for a multitude of flow cell applications. While there are several options, choosing which is optimal for your analyses is usually fairly straight-forward.

To begin, in most cases, the analyte(s) of interest determines the working electrode material. For most oxidizable or reducible organic compounds, a glassy carbon electrode is used. For acetylcholine, either a platinum or “wired” glassy carbon is used (since enzymatic derivatization yields detectable H2O2). Hg/Au is used to determine thiols/disulfides, a copper electrode for carbohydrates, and gold is used for pulsed electrochemical detection (PAD) techniques. If you are not sure which electrode will be optimal for your application, we would be delighted to assist; call or email BASi and we can discuss detection of your analyte.

A second deciding factor, is whether the HPLC column is standard bore size or microbore. In many instances an electrochemical cell used for standard chromatography can be optimized for a microbore system by the simple change of flowcell gasket thickness, thus reducing the cell-swept-volume.

Third, several electrochemical cell flow patterns are available. Either a “cross-flow” or “radial-flow” cell will usually give you the optimal response, thus resulting in lower detection limits. Generally radial-flow cells are best suited for microbore electrochemical detection systems and cross-flow for standard bore chromatography systems. If post-column fraction collection or connection to a second detector (UV, fluorescence, or MS) is required, then the cross-flow with reference port configuration (MF-1092) should be used.

A complete flowcell consists of two separate BASi® part numbers, one for the Auxiliary Electrode, the other for a Cell Kit.

  • The Auxiliary Electrode includes a phenolic base, arms, and exit ports.
  • The Cell Kit includes a glassy carbon working electrode, gasket, reference electrodes, the retaining hardware for these electrodes, and a polishing kit.

We cannot sell BASi Products to UK customers.

NANOSSR offers a variety of electrochemistry products. Please contact us for more information.

€ 4.00
GRAPHENE SHEET
Recent Posts

Future Communication with 5G Technology and Advanced Materials

Preserving History with the Power of Graphene
Future Communication with 5G Technology and Advanced Materials 5G technology opens the doors to a new era in communication with faster connection speeds, low late...

5G technology opens the doors to a new era in communication with faster connection speeds, low latency and wide coverage. This new generation technology enables important applications in many sectors...

​Graphite Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
​Graphite Applications on Anti-friction Coatings Graphite is said to be known as one of the forms of carbon present in usually crystalline form. Thi...

Graphite is said to be known as one of the forms of carbon present in usually crystalline form. This too has various types and varieties in which graphite can be exhibited. However, recently it has c...

Cuprous (Copper) Oxide Properties and Applications

Preserving History with the Power of Graphene
Cuprous (Copper) Oxide Properties and Applications Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound compr...

Cuprous oxide is also commonly known as copper oxide which is basically an inorganic compound comprising of copper and oxygen. It has some excellent properties that enable it to surpass a lot of copp...

Cellulose Nanocrystals (CNC), Applications and Properties

Preserving History with the Power of Graphene
Cellulose Nanocrystals (CNC), Applications and Properties Cellulose is a very abundant polymer naturally available as it is a vital component present in vari...

Cellulose is a very abundant polymer naturally available as it is a vital component present in various plant cell walls. Besides, cellulose nanocrystals (CNC) also found in every other species all of...

Ketjen Black Applications As a Superconductor

Preserving History with the Power of Graphene
Ketjen Black Applications As a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

​7 Reasons to Why Fullerenes are Growing Market

Preserving History with the Power of Graphene
​7 Reasons to Why Fullerenes are Growing Market Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These m...

Fullerene is a carbon allotrope consist of carbon atoms attached via single or double bonds.These molecules have rich characteristics and potentially strong properties which enable them to work effec...

Molybdenum Disulfide (MoS2) Properties and Applications

Preserving History with the Power of Graphene
Molybdenum Disulfide (MoS2) Properties and Applications Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the t...

Molybdenum disulfide, also known as MoS2, is one of the best materials initially belonging to the transition metals.Its structure is unique hence all the properties it possesses are unique.  The buil...

From Graphene to the New Teflon

Preserving History with the Power of Graphene
From Graphene to the New Teflon Graphene is one of the most used materials in today's world and with all the exceptions that it is ...

Graphene is one of the most used materials in today's world and with all the exceptions that it is being used, it is being proven as one of the best materials for almost all industries.  Ever since i...

​Use of Graphene In The Textile Industry, Examples From The Market And Its Future

Preserving History with the Power of Graphene
​Use of Graphene In The Textile Industry, Examples From The Market And Its Future Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put t...

Graphene is known as a carbon allotrope in the industry as it comprises carbon atoms that are put together in the form of a lattice. Graphene is a highly necessary product in today's world as it is s...

IR Coating Technology and Applications

Preserving History with the Power of Graphene
IR Coating Technology and Applications IR coating technology is used for the optical coatings that perform their functions at a very large...

IR coating technology is used for the optical coatings that perform their functions at a very large scale. This includes UV wavelengths which are both short and long too. A lot of comprehensive studi...

Silicon Dioxide in Battery Applications

Preserving History with the Power of Graphene
Silicon Dioxide in Battery Applications Silicon dioxide is a promising material for next generation battery technologies because of its hig...

Silicon dioxide is a promising material for next generation battery technologies because of its high capacity and abundance. Especially Li-ion and Li-S batteries benefit from silicon dioxide and its ...

Properties of ​Ketjen Black as a Superconductor

Preserving History with the Power of Graphene
Properties of ​Ketjen Black as a Superconductor Ketjen black is basically a conductive agent and conductive agents are usually used to make sure th...

Ketjen black is basically a conductive agent and conductive agents are usually used to make sure that the electrode possesses good charge and discharge performance. So ketjen black is responsible for...

MoS2 Applications on Anti-friction Coatings

Preserving History with the Power of Graphene
MoS2 Applications on Anti-friction Coatings MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a tr...

MoS2 is basically the chemical formula of molybdenum disulfide which is a compound known to be a transition metal dichalcogenide having a blackish and silvery appearance. MoS2 is one of the categori...

​How to Sustainably Produce Nano Clays

Preserving History with the Power of Graphene
​How to Sustainably Produce Nano Clays Nanoclays, with their unique layered structure and nanometric size, are transforming industries by ...

Nanoclays, with their unique layered structure and nanometric size, are transforming industries by enhancing the performance of materials in packaging, automotive, and environmental engineering.  Th...

​10 Uses of Calcium Oxide in Daily Life

Preserving History with the Power of Graphene
​10 Uses of Calcium Oxide in Daily Life Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that...

Calcium oxide is the chemical combination of calcium and oxygen subsequently forming a product that is rich in its characteristics and has an excellent set of properties that enable it to perform var...

​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications

Preserving History with the Power of Graphene
​Cubic Boron Nitride Nanopowders: The New Diamond, Properties, and Applications Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula ...

Boron nitride is a chemical compound consisting of nitrogen and boron, having the chemical formula BN. It has various forms but the most common one is the cubic boron nitride form. It is actually a t...